扒扒與大數(shù)據(jù)有關(guān)的那些事兒!》》》上海禮儀公司《《《
不管是學(xué)術(shù)圈還是IT圈,只要能談?wù)擖c(diǎn)兒大數(shù)據(jù)就顯得很高大上。然而,大數(shù)據(jù)挖掘、大數(shù)據(jù)分析、大數(shù)據(jù)營銷等等事情僅僅只是個開始。
于是,站在客觀的角度,圍繞下面幾個問題與大家分享有關(guān)大數(shù)據(jù)的幾個觀點(diǎn),也扒扒大數(shù)據(jù)的那些事兒:
1、大數(shù)據(jù)營銷和個人隱私泄露究竟有無因果和邏輯關(guān)系?
2、大數(shù)據(jù)營銷到底能帶給企業(yè)什么樣的價(jià)值?到底能帶給用戶什么價(jià)值?用戶是否全盤否定或反感大數(shù)據(jù)營銷?
3、如何正確看待大數(shù)據(jù)?如何看待大數(shù)據(jù)和傳統(tǒng)調(diào)查方法或統(tǒng)計(jì)學(xué)的關(guān)系?
4、大數(shù)據(jù)營銷究竟面臨什么樣的挑戰(zhàn)?
一、大數(shù)據(jù)的迅猛發(fā)展與數(shù)據(jù)隱私的憂慮相伴而生
社交媒體的出現(xiàn),讓用戶數(shù)據(jù)的分享數(shù)量達(dá)到了難以估量的程度。而如今,社交媒體的種類有增無減,智能手機(jī)的更大普及,又讓更多用戶轉(zhuǎn)移到移動互聯(lián)網(wǎng),從而又進(jìn)一步貢獻(xiàn)更多數(shù)據(jù)和內(nèi)容。這樣的數(shù)據(jù)增量讓全球社交媒體的收入大漲,僅根據(jù)咨詢公司Gartner2012年的研究結(jié)果顯示,2012年全球社交媒體收入估計(jì)達(dá)到169億美元。
一邊是社交媒體因?yàn)榇髷?shù)據(jù)的盆缽滿載,另一方面則是用戶不斷毫無保留的將個人信息交給互聯(lián)網(wǎng),這些信息包括年齡、性別、地域、生活狀態(tài)、態(tài)度、行蹤、興趣愛好、消費(fèi)行為、健康狀況甚至是性取向等。一時(shí)間,針對海量用戶信息的大數(shù)據(jù)挖掘、大數(shù)據(jù)分析、大數(shù)據(jù)精準(zhǔn)營銷、廣告精準(zhǔn)投放等等迅速被各大公司提上日程。
比如,一個發(fā)生在美國的真實(shí)故事就會告訴我們,利用數(shù)據(jù)挖掘如何掌握我們的行蹤。一個美國家庭收到了一家商場投送的關(guān)于孕婦用品的促銷劵,促銷劵很明顯是給給家中那位16歲女孩的。女孩的父親很生氣,并找商場討說法。但幾天后,這位父親發(fā)現(xiàn),16歲的女兒真懷孕了。而商場之所以未卜先知,正是通過若干商品的大量消費(fèi)數(shù)據(jù)來預(yù)估顧客的懷孕情況。
類似的大數(shù)據(jù)挖掘和營銷事件在今天更多的發(fā)生,尤其是社交媒體產(chǎn)生大量數(shù)據(jù)后。于是,許多人對個人隱私數(shù)據(jù)開始擔(dān)憂,開始批判大數(shù)據(jù)精準(zhǔn)營銷侵犯了個人隱私,憂慮我們進(jìn)入了大數(shù)據(jù)失控的時(shí)代,并將原因更多歸結(jié)于社交媒體。
二、大數(shù)據(jù)營銷和個人隱私泄露之間不能完全劃等號!邏輯關(guān)系不成立!
如果客觀的分析一下上述問題就會發(fā)現(xiàn),這是一個難以分說的雞生蛋還是蛋生雞的問題。一味地批判大數(shù)據(jù)分析對個人用戶數(shù)據(jù)的泄露或?yàn)E用是不客觀的。
因?yàn)?,社交媒體的本質(zhì)在于分享和傳播,社交媒體的出現(xiàn)的確滿足了人們分享個人信息、曬各種數(shù)據(jù)的欲望,讓人們在過去無聲無息的生活中突然轉(zhuǎn)移到了可以讓全世界看到自己的平臺上來。人們從而達(dá)到了內(nèi)心的滿足感和存在感。因此,單從個體的背后心理來考慮,社交媒體對他們來說是有益的,他們不認(rèn)為自己貢獻(xiàn)的是不可告人的秘密,既然分享出來,那一定是希望或允許別人看到的。因此,這是一種無形的默許的交易,用戶樂意把自己的各種瑣碎細(xì)節(jié)暴露于社交媒體,而對社交媒體上雜亂無章的海量用戶數(shù)據(jù)進(jìn)行有序的分類和分析也沒有什么不妥。
當(dāng)然,如果社交媒體平臺隨意濫用或泄露用戶的后臺數(shù)據(jù),比如個人聯(lián)系方式、家庭住址、銀行等極為隱秘的信息,這的確是赤裸的侵犯隱私的行為,極其沒有道德,必須要受到譴責(zé)和法律制裁。
但目前,許多大數(shù)據(jù)精準(zhǔn)營銷的前提是對用戶在互聯(lián)網(wǎng)上留下的公開顯在的信息進(jìn)行算法歸類和內(nèi)容分析,從而對海量用戶進(jìn)行人群劃分,或者對小眾群體進(jìn)一步細(xì)分化,甚至達(dá)到某種程度上針對單個人的個性化定制,最終達(dá)到精準(zhǔn)推送廣告或有針對性推出營銷活動的目的。
所以,從這個角度來看,大數(shù)據(jù)精準(zhǔn)營銷與個人主動分享和傳播到網(wǎng)絡(luò)上的信息數(shù)據(jù)之間并沒有矛盾。人們起初或許會驚訝:為什么他們知道我想買什么?為什么他們知道我的需求?但隨著“猜透心思”的推送行為讓人們的生活越來越便利時(shí),比如省去大量搜索、查找和對比產(chǎn)品或服務(wù)的時(shí)間,他們可能會十分習(xí)慣并依賴這種精準(zhǔn)性,并不會在意他們本來就隨意分享到網(wǎng)絡(luò)上的雜亂信息被如何挖掘和利用。
因此,用戶發(fā)布和分享的信息是否為隱私,在用戶分享信息之前就做過慎重考量和篩選。這一點(diǎn)非常重要,這是侵犯隱私與否的界限。那些被用戶選擇為不適合發(fā)布或不希望別人知道的信息就是用戶認(rèn)為的隱私,而那些已經(jīng)公開發(fā)布到社交媒體或網(wǎng)絡(luò)上的信息則被用戶認(rèn)為是可以傳播的。
所以,普通的對海量公開信息的分析、挖掘、歸類,從而進(jìn)行精準(zhǔn)營銷的大數(shù)據(jù)行為不能一味被罵成是對用戶利益的損害。而那些對用戶存儲在某些位置、不希望被他人了解的信息(私人存儲的信息)如果被別有用心的人泄露或利用,那這就是隱私侵犯行為。但這就不能歸罪于大數(shù)據(jù),而應(yīng)質(zhì)問存貯平臺的安全性問題。
因此,我們不能過分解讀大數(shù)據(jù)精準(zhǔn)營銷。其實(shí),問題的本質(zhì)在于,人們是否真的在意雜亂信息的去向(涉及到分享信息的背后心理和動機(jī))?以及大數(shù)據(jù)營銷是否真的觸碰了人們不可告人的秘密或底線(需要對秘密和底線重新定義)?因?yàn)?,如果人們默認(rèn)分享的都是公開的,那么侵犯隱私的概念就是不成立的。如果人們有不希望別人知道的信息,也不會貿(mào)然在網(wǎng)絡(luò)上分享和傳播。
三、大數(shù)據(jù)營銷究竟會給企業(yè)和用戶帶來什么價(jià)值?
討論完上面的問題之后,我們是否應(yīng)該誠懇對待大數(shù)據(jù)精準(zhǔn)營銷這件事?那么大數(shù)據(jù)營銷究竟對于企業(yè)和用戶兩方面來說,都有什么樣的價(jià)值?
1、對于企業(yè)的價(jià)值
讓我們先看一個國外案例:
我們都知道美劇《紙牌屋》,提到《紙牌屋》的成功,最大的功勞便是大數(shù)據(jù)分析。因此,《紙牌屋》幾乎成了大數(shù)據(jù)營銷的經(jīng)典案例,也是美國Netflix公司基于用戶信息挖掘來決定內(nèi)容生產(chǎn)的成功嘗試。
Netflix的訂閱用戶達(dá)到了3000萬左右,而大多數(shù)用戶的觀影都與精準(zhǔn)推薦系統(tǒng)有關(guān)。Netflix會定時(shí)收集并分析用戶觀看電影或電視劇的行為,比如根據(jù)用戶對電影的評分、用戶的分享行為、用戶的觀影記錄等信息去分析用戶的收看習(xí)慣,從而推斷用戶喜歡什么樣的影視劇,喜歡什么樣的風(fēng)格,喜歡什么樣的導(dǎo)演和演員。在此基礎(chǔ)上利用算法對用戶感興趣的視頻進(jìn)行推薦排序,直到用戶找到最喜歡的影視劇?!都埮莆荨返膶?dǎo)演和主演就是Netflix挖掘用戶信息后的預(yù)測出來的。
那我們再看一個國內(nèi)案例:
我們都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥資5.86億入股新浪微博。除了網(wǎng)絡(luò)上各大媒體分析的,認(rèn)為阿里巴巴希望打造生態(tài)圈、強(qiáng)化流量入口、挑戰(zhàn)騰訊等等原因之外,還有一個重要原因或許就是大數(shù)據(jù)營銷的戰(zhàn)略。
如今各大互聯(lián)網(wǎng)大佬都在跑馬圈地,圈住用戶,誰能圈住用戶,讓用戶在其平臺上活躍,誰就掌握了用戶的大量信息(包括顯在的前臺信息和隱藏的后臺信息)。新浪微博在中國有幾億用戶,這個量十分龐大,但如果新浪不能把這些用戶產(chǎn)生的信息合理的利用,那么這些資源就是巨大的浪費(fèi)。我們再看阿里巴巴,中國最大電商平臺,它有產(chǎn)品,但是卻沒有完整的用戶日常生活行為信息,只有購買信息,但這些購買信息不足以了解人群特點(diǎn)和喜好。所以,只有跟新浪微博合作,掌握大量用戶的行為信息,從而對其分類,找到不同人群甚至不同個體的喜好、偏好、興趣、愛好、習(xí)慣、傳播習(xí)慣、分享路徑等等,那么就能實(shí)現(xiàn)精準(zhǔn)營銷,甚至還可以通過不同用戶的信息傳播規(guī)律,而制定產(chǎn)品的最佳品牌傳播途徑。這是一座巨大的金礦。
新浪微博和阿里巴巴合作后,微博上出現(xiàn)了一些產(chǎn)品推薦信息,同時(shí)新浪微博已經(jīng)推出支付功能??梢韵胂螅何磥砟阍谖⒉┥峡吹较嚓P(guān)推薦的產(chǎn)品,恰好是你喜歡的產(chǎn)品,那么你就可以直接在微博上實(shí)現(xiàn)支付和購買。從而新浪微博和阿里巴巴各取所需,共享收益。當(dāng)然,這是我個人的觀察和分析,不過阿里巴巴的大數(shù)據(jù)戰(zhàn)略也很明顯了。
2、對于用戶的價(jià)值
上述兩個例子說的都是大數(shù)據(jù)帶給企業(yè)的價(jià)值,那么,大數(shù)據(jù)營銷對于用戶來說,到底有沒有價(jià)值?用戶是否十分反感精準(zhǔn)營銷?讓我們再來看看一個新的調(diào)查數(shù)據(jù):
中國傳媒大學(xué)國家廣告研究院剛剛發(fā)布一份《2014中美移動互聯(lián)網(wǎng)發(fā)展報(bào)告》,這份調(diào)查報(bào)告對比了中美兩國用戶移動互聯(lián)網(wǎng)的使用習(xí)慣,以及移動用戶對于移動廣告的態(tài)度。
調(diào)查顯示,最可能得到智能終端用戶回應(yīng)的廣告內(nèi)容為:
(1)與用戶要購買物品相關(guān)的廣告;
(2)與要購買物品相關(guān)的優(yōu)惠券;
(3)搞笑的廣告;
(4)與用戶最喜愛品牌相關(guān)的廣告;
(5)與用戶在線上訪問過網(wǎng)站或使用過的應(yīng)用相關(guān)的廣告;
(6)與最近線上購物相關(guān)的廣告;
(7)與用戶所在場所相關(guān)的廣告;
(8)與最近收聽、收看的廣播/電視相關(guān)的廣告。(占比=20%)
從這些數(shù)據(jù)我們可以看出,在8個結(jié)果中,有6個都是跟大數(shù)據(jù)精準(zhǔn)營銷扯上關(guān)系的。比如,與用戶要購買物品相關(guān)的廣告,更能引起用戶的回應(yīng)或互動。如何理解?大數(shù)據(jù)營銷的前提就是計(jì)算并推測用戶的真實(shí)需求,看用戶需要購買什么相關(guān)產(chǎn)品,然后給用戶直接推送用戶想要的、喜歡的,做到了精準(zhǔn)到達(dá)。那么用戶呢?用戶樂意對這樣的推動廣告或產(chǎn)品做出回應(yīng),因?yàn)檫@些廣告少了對用戶的打擾,并且讓用戶費(fèi)勁心思對對比或貨比三家后才購買的決策過程降低,節(jié)省了時(shí)間,讓用戶直接找到內(nèi)心真正所需的產(chǎn)品或服務(wù)。
所以,這樣的結(jié)果就表明,大數(shù)據(jù)精準(zhǔn)營銷并不是完全都會讓用戶反感,而是看你猜透用戶心思的程度。因此,如果你推送的內(nèi)容和用戶想要購買的物品相關(guān),與用戶最喜愛的品牌相關(guān)等等。那么這種精準(zhǔn)挖掘并不會受到用戶的反感,反而會給用戶帶來便利。
四、不要過分迷信大數(shù)據(jù);大數(shù)據(jù)的實(shí)質(zhì)究竟是什么?
看了上面的分析,或許你會認(rèn)為大數(shù)據(jù)分析真是無所不能。但是,我們不能過分迷信大數(shù)據(jù),于是接下來的問題就產(chǎn)生了。
1、大數(shù)據(jù)分析和傳統(tǒng)統(tǒng)計(jì)學(xué)方法有什么樣的關(guān)系?
大數(shù)據(jù)所遵從的是:以大量數(shù)據(jù),甚至所有數(shù)據(jù)為基礎(chǔ),然后用算法去計(jì)算分析,從而更精準(zhǔn)的找到各個因素之間的相關(guān)關(guān)系(不是因果關(guān)系),以發(fā)現(xiàn)數(shù)據(jù)之間的規(guī)律。
那我們看看傳統(tǒng)的統(tǒng)計(jì)學(xué)方法,統(tǒng)計(jì)分析學(xué)解決的就是如何通過選取少量的樣本,通過對樣本的分析,然后推斷整體的趨勢和規(guī)律。所以,用的是概率。一般會規(guī)定在90%、95%或98%的置信度(精確度)下最大程度推斷總體。如果目的明確,樣本選取得當(dāng),操作科學(xué),那么不需要大量數(shù)據(jù)就能分析出規(guī)律,從而推斷出總體的規(guī)律,并且可以發(fā)現(xiàn)不同因素之間的因果關(guān)系。比如,抽樣方法確定后,就可以確定樣本數(shù)量,如果抽樣得當(dāng),那么樣本的數(shù)量跟總體的數(shù)量之間沒有太多直接關(guān)系。
舉個不恰當(dāng)?shù)睦右怨├斫猓杭僭O(shè)選取1000個樣本,推斷的規(guī)律是A,選取2000個樣本,同樣呈現(xiàn)出A規(guī)律,選取3000也差不多這樣。那么,我們實(shí)際上科學(xué)選取1000多個樣本就可以達(dá)到目的了。所以,傳統(tǒng)的抽樣和統(tǒng)計(jì)方法,在最大程度上解決了成本問題,雖然會有誤差,但仍可以發(fā)現(xiàn)的顯在規(guī)律。
所以,從這個角度來說,大數(shù)據(jù)分析最終得到的結(jié)果很可能跟傳統(tǒng)統(tǒng)計(jì)學(xué)方法分析的結(jié)果類似,只不過把原來的小樣本變成了大樣本分析。雖然大數(shù)據(jù)分析理論上是更精準(zhǔn),也可以彌補(bǔ)傳統(tǒng)誤差的缺陷,但準(zhǔn)確度未必像我們想象的那樣提高非常多(因?yàn)榇髷?shù)據(jù)分析會嚴(yán)重受到數(shù)據(jù)源的影響)。另外,也不一定能發(fā)現(xiàn)更多新規(guī)律。如果是這樣的話,我們不禁要問,大數(shù)據(jù)究竟是為什么而存在?
另外,在傳統(tǒng)的統(tǒng)計(jì)學(xué)分析當(dāng)中,比如對市場情況的分析,我們要結(jié)合實(shí)際的環(huán)境和背景來解讀數(shù)據(jù)和分析數(shù)據(jù),我們并不把數(shù)據(jù)當(dāng)成唯一的和萬能的指引。所以,這里面就存在人根據(jù)經(jīng)驗(yàn)和實(shí)際情況進(jìn)行數(shù)據(jù)分析的過程,而人參與分析的能力是很重要的。
2、什么樣的事情是大數(shù)據(jù)做不到的,而傳統(tǒng)的調(diào)查分析方法卻可以做到?
大數(shù)據(jù)營銷的前提是大數(shù)據(jù)分析,而大數(shù)據(jù)分析是基于算法的,是計(jì)算機(jī)固化的模式。也就是說,原來由人對數(shù)據(jù)分析的那部分工作,現(xiàn)在我們把它約定到算法里了。并且,大數(shù)據(jù)精準(zhǔn)營銷是對用戶產(chǎn)生的網(wǎng)絡(luò)瀏覽數(shù)據(jù)、分享數(shù)據(jù)、搜索數(shù)據(jù)等等行為信息進(jìn)行分析,從而對人群或事物進(jìn)行分類,并由此推測人的偏好、興趣等。
但是,偏好不等于真實(shí)需求,點(diǎn)擊不代表一定喜歡。一個人今天在社交媒體上說:“這個產(chǎn)品不錯”,就認(rèn)為他一定喜歡或一定需要這個產(chǎn)品嗎?
機(jī)器可以對行為分類,但卻不能真正探測到人的心理和真實(shí)需求。那么,對于人的真實(shí)心理和需求的探測,我們?nèi)绾巫龅??這時(shí)候,傳統(tǒng)的市場調(diào)查和分析方法是不可取代的。比如,深度訪談法,比如焦點(diǎn)小組訪談法,投射法等等。這些方法都可以在最大程度上,從心理學(xué)的角度去分析和發(fā)現(xiàn),人真正的欲望和本質(zhì)需求。所以,今天很多大的廣告公司、營銷公司,他們?nèi)匀徊捎眠@樣傳統(tǒng)的方法去了解表面數(shù)據(jù)背后的故事和原因。而這些故事和原因,是算法目前沒辦法做到的,必須由人來完成。人和人的交流才能探測人的內(nèi)心。
從這個角度來說,大數(shù)據(jù)并不是萬能的,也不能被一味神話,我們必須清晰的認(rèn)識到它的實(shí)質(zhì),它能用來干什么,不能用來干什么。我們可以這樣理解:人對數(shù)據(jù)的計(jì)算和分析工作如今可能會被機(jī)器替代,但是,人的另一部分工作(探測人內(nèi)心的能力)沒辦法被算法替代。
比如,前兩年我曾報(bào)道過《寫書都可以用算法實(shí)現(xiàn)自動化了,拿什么挽救出版》這樣的新技術(shù),據(jù)稱目前亞馬遜上大量圖書都是被算法寫出來的,算法會根據(jù)人寫書的邏輯思路來組織語言。但是,這些書卻不能彌補(bǔ)人類情感的缺失,不能表達(dá)出社會背景和作者所處環(huán)境帶來的情感波動等等。
五、大數(shù)據(jù)分析或大數(shù)據(jù)營銷面臨的真正挑戰(zhàn)是什么?
1、 數(shù)據(jù)冗余問題,有沒有必要用這么多數(shù)據(jù)?
數(shù)據(jù)源問題,數(shù)據(jù)質(zhì)量有無保障,是否是真正所需?
大數(shù)據(jù)分析一直被人稱頌的優(yōu)點(diǎn)就是:海量數(shù)據(jù)的運(yùn)用。但是,數(shù)據(jù)是不是越多越好?如何篩選這些數(shù)據(jù)?如何找到有價(jià)值和有用的數(shù)據(jù)?數(shù)據(jù)的龐大和冗余會對大數(shù)據(jù)分析造成什么樣的影響?
對于大數(shù)據(jù)而言,巨量的數(shù)據(jù)來源是分析準(zhǔn)確性的根本保證。但是,數(shù)據(jù)量大到一定程度后也面臨著很大問題:想要保證準(zhǔn)確度就變的困難了。這樣就難以保障分析結(jié)果的準(zhǔn)確性了。大數(shù)據(jù)分析和預(yù)測失敗的例子也有很多。比如,最典型和著名的一個便是谷歌預(yù)測流感趨勢失敗的案例。
報(bào)道稱,谷歌是基于搜索引擎數(shù)據(jù)進(jìn)行的分析,其分析結(jié)果與美國疾病防控中心的監(jiān)測數(shù)據(jù)相差近兩倍。盡管谷歌不斷調(diào)整算法,但仍不能保證結(jié)果的準(zhǔn)確性。這就說明一個重要問題:數(shù)據(jù)源問題。谷歌是基于搜索引擎上的搜索詞來分析的,許多搜索詞都是無效的,沒有任何意義的,所以它們不能真的代表流感趨勢,但它們同樣被計(jì)算在內(nèi)。這就造成了結(jié)果的嚴(yán)重偏差。
所以,你弄到的這些數(shù)據(jù),如何保障它們的確是你所需的?的確是重要的?如果數(shù)據(jù)源出現(xiàn)了嚴(yán)重偏差,那么你的分析再精準(zhǔn),那么也是徒勞。比如,你花費(fèi)了大量精力去搜集互聯(lián)網(wǎng)用戶產(chǎn)生的日常分享信息,你對他們的所有信息都進(jìn)行分析,結(jié)果預(yù)測出幾種消費(fèi)趨勢。但是,這些分享信息中有大量冗余信息,數(shù)據(jù)精準(zhǔn)度很差,許多都是跟消費(fèi)沒有關(guān)系的,那么這種分析結(jié)果很可能就是不準(zhǔn)確的。你按照這種結(jié)果進(jìn)行下一步營銷戰(zhàn)略當(dāng)然可能是失敗的。
2、大佬平臺的游戲,普通企業(yè)難掌握大量數(shù)據(jù);難檢驗(yàn)可信性
各大互聯(lián)網(wǎng)公司平臺掌握著用戶資源,用戶產(chǎn)生的信息當(dāng)然也被聚集在各平臺內(nèi)。但是,各家公司或平臺的數(shù)據(jù)并不會完全向公眾開放。我們只能通過某些工具抓取到網(wǎng)絡(luò)上散落的信息,但不能準(zhǔn)確掌握完整的有實(shí)際價(jià)值和意義的后臺數(shù)據(jù)和信息。
而這些海量信息,對于像谷歌這樣的大互聯(lián)網(wǎng)公司來說,就是寶藏。大數(shù)據(jù)或許只是這些大佬平臺的游戲,普通企業(yè)比較難參與進(jìn)來。
并且,這些平臺之間并不互通和開放,他們分析出來的數(shù)據(jù)結(jié)果得不到第三方的驗(yàn)證和檢驗(yàn),我們就無法知道他們大數(shù)據(jù)分析結(jié)果的有效性和可信性。當(dāng)然,他們將這些數(shù)據(jù)分析用戶自身產(chǎn)品開發(fā)和自身發(fā)展上還是很有價(jià)值的。所以,普通人或普通企業(yè)對于大數(shù)據(jù)的渴望或許是奢望。將來互聯(lián)網(wǎng)大平臺公司或許會售賣大數(shù)據(jù)分析的服務(wù),這很有可能。并且,未來,個人數(shù)據(jù)管理領(lǐng)域的創(chuàng)新和創(chuàng)業(yè)將會增加,應(yīng)用也會增多。
所以,從以上這些方面看,大數(shù)據(jù)分析和大數(shù)據(jù)營銷還有很長的路要走。我們需要正確、理性地看待大數(shù)據(jù)。
(微信公眾號:科技常評論 kejichangpinglun)